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A DEEP NEURAL NETWORK-BASED NUMERICAL METHOD FOR SOLVING
CONTACT PROBLEMS

XING SHEN, XIAOLIANG CHENG∗, KEWEI LIANG, XILU WANG, ZHENGHUA WU

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China

Abstract. In this paper, we propose a deep neural network-based numerical method for solving contact
problems. Focusing on a static frictionless unilateral contact problem, we derive its weak formulation
and prove that the solution of the weak formulation is also the minimizer of the corresponding energy
functional. By converting the original contact problem into a minimization problem, a deep neural
network is adopted to approximate the solution and solve the minimization problem. Numerical results
demonstrate the effectiveness and accuracy of our method.
Keywords. Deep neural networks; Frictionless unilateral contact problem; Hemivariational inequality.

1. INTRODUCTION

A contact problem occurs when at least two bodies not mechanically joined touch each other
without becoming rigidly attached. Contact processes appear in industry and everyday life,
such as brake pads in contact with wheels, tires on roads, and pistons with skirts. Due to
the importance of contact processes in structural and mechanical systems, the contact problem
has received a lot of attention. After Panagiotopoulos’ pioneering work on hemivariational in-
equalities [1], mathematical theories and numerical analysis of contact models in the form of
hemivariational inequality were established extensively and thoroughly in recent decades; see,
e.g., [2, 3, 4, 5] and the references therein. In [6], the authors discussed a bilateral contact prob-
lem with nonmonotone friction by an elliptic hemivariational inequality and derived the error
estimate for its finite element solutions. In [7], a class of variational-hemivariational inequal-
ities was studied theoretically and numerically. For the linear finite element solutions of the
problem, an optimal first-order error estimate was derived. In [8], three representative mathe-
matical models for the contact problem with elastic and viscoelastic materials were studied, and
the proofs of existence and uniqueness are given, as well as the convergence analysis and error
estimation of the numerical solutions.

Recently, developments in deep learning led to an explosive growth of data-driven solutions
for PDEs via deep neural networks; see, e.g., [9, 10, 11, 12, 13, 14]. In these methods, DNNs are
applied as a universal approximator to parametrize PDE solutions, and appropriate parameters
are identified by minimizing an optimization problem constructed from the given PDE and
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corresponding boundary condition. Karniadakis and his team proposed physics-informed neural
networks (PINNs), which solve supervised learning tasks respecting the incorporate physical
information. They designed several models for different types of PDEs [11, 15]. In [14], Weinan
and Yu proposed the Deep Ritz method for the numerical solution of variational problems based
on the Ritz method. In [16], DeepOnets was proposed to learn nonlinear operators to identify
differential equations based on the universal approximation theorem. In [17], residual networks
were adopted to approximate the evolution operator for solving and recovering unknown time-
dependent PDEs.

Although many deep learning-based methods have been proposed for solving different types
of PDEs and have achieved remarkable results, there are few works on contact problems and the
corresponding hemivariational inequalities. In [18], the authors proposed a deep learning-based
method to solve the elliptic hemivariational inequalities and compared the numerical perfor-
mance of three different training strategies for updating the parameters. To the best of our
knowledge, there are no other deep learning-based numerical methods for solving contact prob-
lems. In this paper, we propose a deep neural network-based method for solving contact prob-
lems. We focus on a static frictionless unilateral contact problem and propose the corresponding
hemivariational inequality. We prove that the solution of the hemivariational inequality is also
the minimizer of a corresponding energy functional. Then we relax the restriction of boundary
by adding two Lagrange terms to the energy functional. In this way, we convert the original
contact problem into a minimization problem and use a deep neural network to approximate the
solution. We propose an asynchronous iterative strategy to make it easier for the model to con-
verge. Our method has the advantages of being unsupervised, meshless, and easy to implement.
Finally, two numerical experiments demonstrate the effectiveness and precision of our method.

This paper is organized as follows. In Section 2, we introduce some basic notions and def-
initions. In Section 3, we propose the contact problem and the corresponding hemivariational
inequality and prove that the solution of the hemivariational inequality is also the minimizer of a
corresponding energy functional. In Section 4, the deep neural network framework is presented
in detail. In Section 5, two numerical examples are presented to illustrate the performance of
the proposed method.

2. PRELIMINARIES

We first present some necessary notations. Let X be a Banach space and ϕ : X → R be a
locally Lipschitz function. From [19], the generalized (Clarke) directional derivative of ϕ at
x ∈ X in the direction v ∈ X is defined by

ϕ0(x;v) = limsup
y→x,t↓0

ϕ(y+tv)−ϕ(y)
t .

The generalized gradient of ϕ at x is a subset of a dual space X∗, given by ∂ϕ(x) = {ζ ∈ X∗ |
ϕ0(x;v)≥ 〈ζ ,v〉X∗×X for all v∈ X}. Let Φ : X→R∪{+∞} be proper, convex, and l.s.c. (lower
semicontinuous). Then the (convex) subdifferential of Φ at x ∈ X is

∂Φ(x) = {ξ ∈ X∗ |Φ(v)−Φ(x)≥ 〈ξ ,v− x〉X∗×X for all v ∈ X}.
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Let Sd be the linear space of second-order symmetric tensors on Rd . The inner product and
the corresponding norm on Sd are:

u · v = uivi, ‖v‖= (v · v)1/2 for all u = (ui) ,v = (vi) ∈ Rd.

σ · τ = σi jτi j, ‖τ‖= (τ · τ)1/2 for all σ =
(
σi j
)
,τ =

(
τi j
)
∈ Sd.

We consider a domain Ω, which is open, bounded, and connected in Rd . The boundary Γ =
∂Ω is partitioned into three disjoint and measurable parts Γ1,Γ2, and Γ3 such that meas(Γ1)> 0
and meas(Γ3)> 0. We assume that the boundary Γ = ∂Ω is Lipschitz continuous. Then the unit
outward normal vector ν is defined a.e. on Γ. For a vector field v, the normal and tangential
components of v are denoted by vν = v · ν and vτ = v− vνν . Similarly, for a tensor field σ ,
the normal and tangential components are denoted by σν = (σν) ·ν and σ τ = σν−σνν . The
corresponding space is defined as follows

H = L2
(

Ω;Rd
)
, H =

{
τ =

{
τi j
}

: τi j = τ ji ∈ L2(Ω)
}
= L2

(
Ω;Sd

)
.

H1 = {u ∈ H : ε(u) ∈H }= H1
(

Ω;Rd
)
, H1 = {τ ∈H : divτ ∈ H},

where the deformation operator ε and divergence operator Div are defined as

ε i j(u) = (ε(u))i j =
1
2
(
ui, j +u j,i

)
,

Divσ =

(
d

∑
j=1

σi j, j

)
.

The index following comma indicates a partial derivative. Let V be a Hilbert space with the
inner product

(u,v)V :=
∫

Ω

ε(u) : ε(v)dx, ∀u,v ∈V,

and the associated norm ‖ · ‖V is equivalent to the standard H1 norm over V . For v ∈V , we use
the same symbol v for its trace on Γ. The dual of V is denoted by V ∗, and the duality pairing of
V and V ∗ is denoted by 〈·, ·〉 .

Let Q = L2(Ω;Sd). It is a Hilbert space with the canonical inner product

(σ ,τ)Q :=
∫

Ω

σi j(x)τi j(x)dx, ∀ σ ,τ ∈ Sd

and the associated norm ‖ · ‖Q.

3. CONTACT PROBLEMS

In this section, we focus on a static frictionless unilateral contact problem. Followed by
[20, 21], we present the weak form of the contact model and the unique solvability, and we
prove that the weak form is equivalent to a minimization problem.

Now, we consider the following contact model. The dependence on the spatial variable x is
not always indicated to simplify the notation.
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Problem P Find a displacement field u : Ω→ Rd , a stress field σ : Ω→ Sd such that

σ = A ε(u) in Ω, (3.1)

Divσ + f 0 = 0 in Ω, (3.2)

u = 0 on Γ1, (3.3)

σν = f 2 on Γ2, (3.4)

uν ≤ g, σν +ξν ≤ 0, (uν −g)(σν +ξν) = 0, ξν ∈ ∂ j(uν) on Γ3, (3.5)

σ τ = 0 on Γ3.

Equation (3.1) represents the constitutive law of elastic material. Equation (3.2) is the nor-
malized equilibrium equation for the static process. A total body force of density f 0 is applied
in the body Ω. Boundary conditions (3.3)-(3.4) indicate that the body is fixed on Γ1, and is
in equilibrium under the action of a surface traction of density f 2 on Γ2. The relations (3.5)
model a frictionless contact with a foundation made of a rigid body covered by a layer of an
elastic material with thickness g > 0. The penetration is allowed but is restricted by the relation
uν ≤ g. This contact model is a simplified version of that in [8] with the friction term on Γ3
being dropped here.

Then we present the weak form of Problem P and its unique solvability. Since it is the result
proved in [8], we skip the details. The hypotheses on the data are listed.

H(A ) : The elasticity tensor A : Ω×Sd → Sd is in the form of A = (Ai jkl)1≤i, j,k,l≤d
and satisfies:

(i) Ai jkl = A jikl = Akli j, 1≤ i, j,k, l ≤ d;

(ii) Ai jkl ∈ L∞(Ω), 1≤ i, j,k, l ≤ d;

(iii) there eixsts mA > 0 such that (A ε) ε ≥ mA |ε|2, ∀ε ∈ Sd.



H( j) : The function j : Γ3×R→ R satisfies:

(i) j(·,r) is measurable on Γ3 for all r ∈ R and j(·,0) ∈ L1(Γ3);

(ii) j(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3;

(iii) |∂ j(x,r)| ≤ c0 + c1|r| for a.e. x ∈ Γ3, for all r ∈ R with c̄0, c̄1 ≥ 0;

(iv) there eixsts m j ≥ 0 such that j0(x,r1;r2− r1)+ j0(x,r2;r1− r2)≤ m j|r1− r2|2

for a.e. x ∈ Γ3, all r1,r2 ∈ R.{
H( f ) : The densities of body forces and surface tractions satisfy:

f 0 ∈ L2(Ω;Rd), f 2 ∈ L2(Γ2;Rd).

We also need the space V and set K

V = {v ∈ H1(Ω;Rd) | v = 0 a.e. on Γ1},
K = {v ∈V | vν ≤ g on Γ3}.
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Then we define the function f ∈V ∗ by

〈 f ,v〉=
∫

Ω

f 0 · vdx+
∫

Γ2

f 2 · vdΓ, ∀v ∈V.

Through a standard derivation, we have the weak form of Problem P.
Problem PV . Find a displacement field u ∈ K such that

(A ε(u),ε(v−u))Q +
∫

Γ3

j0(uν ;vν −uν)dΓ≥ 〈 f ,v−u〉, ∀v ∈ K.

Let c j = λ
−1/2
j , where λ j > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈V,
∫

Ω

ε(u)ε(v)dx = λ j

∫
Γ3

uνvνda, ∀v ∈V.

Then
‖vν‖L2(Γ3)

≤ c j‖v‖V , ∀v ∈V.
The unique solvability for Problem PV is provided in [8].

Theorem 3.1. Assume H(A ), H( j), H( f ), and

mA > m jc2
j . (3.6)

Then Problem PV has a unique solution.

Now we consider a minimization problem, which is equivalent to Problem PV . For this
purpose, we further define the operator A : V →V ∗ by

〈Au,v〉= (A ε(u),ε(v))Q,

and the functional J : V → R by

J(u) =
∫

Γ3

j(uν)dΓ, ∀u ∈V.

We have the following results.

Lemma 3.1. The operator A : V →V ∗ is symmetric, Lipschitz continuous, and strongly mono-
tone. 〈Av1−Av2,v1− v2〉 ≥ mA ‖v1− v2‖2

V , ∀v1,v2 ∈ V. The functional J : V → R is locally
Lipschitz continuous, and

J0(v1;v2− v1)+ J0(v2;v1− v2)≤ m jc2
j‖v1− v2‖2

V , ∀v1,v2 ∈V. (3.7)

Proof. To prove (3.7), we apply the property ([5], Section 3.3)

J0(u;v)≤
∫

Γ3

j0(uν ;vν)dΓ, ∀u,v ∈V. (3.8)

Then we can obtain

J0(v1;v2− v1)+ J0(v2;v1− v2) ≤
∫

Γ3

j0(v1ν ;v2ν − v1ν)+ j0(v2ν ;v1ν − v2ν)dΓ

≤
∫

Γ3

m j|v1ν − v2ν |2dΓ

≤ m jc2
j‖v1− v2‖2

V .

The other results are easy to check, and we omit the proof. �



488 X. SHEN, X. CHENG, K. LIANG, X. WU, Z. WU

Note that (3.7) is equivalent to the condition

〈ξ 1−ξ 2,v1− v2〉 ≥ −m jc2
j‖v1− v2‖2

V , ∀ ξ i ∈ ∂J(vi), vi ∈V, i = 1,2. (3.9)

We quote two necessary lemmas about the strong convexity of a locally Lipschitz continuous
function ([20]).

Lemma 3.2. Let V be a real Banach space, K be a non-empty convex set in V , and g : K→ R
be locally Lipschitz continuous. Then g is strongly convex on K with a constant α > 0, i.e.,

g(tu+(1− t)v)≤ tg(u)+(1− t)g(v)−αt(1− t)‖u− v‖2
V , ∀u,v ∈ K, t ∈ [0,1],

if and only if ∂g is strongly monotone on K with a constant 2α , that is,

〈ξ −η ,u− v〉 ≥ 2α‖u− v‖2
V , ∀u,v ∈ K, ξ ∈ ∂g(u), η ∈ ∂g(v).

Lemma 3.3. Let V be a real Hilbert space, K be a non-empty closed convex set in V , and
g : K→R be a locally Lipschitz continuous and strongly convex functional on K with a constant
α > 0. Then g is coercive on K.

The following lemma shows the unique solvability for a minimization problem ([22]).

Lemma 3.4. Assume that V is a reflexive Banach space, and K ⊂ V is convex and closed. If
F : K→ R is convex, l.s.c, and coercive on K, then the minimization problem

inf
v∈K

F(v)

has a solution. Furthermore, if F is strictly convex, then the solution is unique.

Now, we present the minimization problem.

Problem PM. Find a displacement field u ∈ K such that u = argmin
v∈K

E(v), where

E(v) =
1
2
〈Av,v〉+ J(v)−〈 f ,v〉.

For the equivalence between Problems PV and Problem PM, we have the following important
theorem.

Theorem 3.2. Problem PM has a unique solution, which is also the unique solution of Problem
PV .

Proof. We first prove that E is locally Lipschitz and strongly convex on V . Since each term in E
is locally Lipschitz on V , so is E. For the strong convexity of E, by Lemma 3.2, it is sufficient
to prove the strong monotonicity of ∂E. For any vi ∈V , let ζ i ∈ ∂E(vi), i = 1,2. Since

∂E(v) = Av+∂J(v)− f , ∀v ∈V,

we can write
ζ i = Avi +ξ i− f , ξ i ∈ ∂J(vi).

Using Lemma 3.1 and (3.9), we have

〈ζ 1−ζ 2,v1− v2〉 = 〈Av1−Av2,v1− v2〉+ 〈ξ 1−ξ 2,v1− v2〉
≥ (mA −m jc2

j)‖v1− v2‖2
V .
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Combining with the smallness condition (3.6), we obtain that ∂E is strongly monotone on V .
Thus E is strongly convex on V . Applying Lemma 3.3, we know that E is also coercive on K.
By Lemma 3.4, we conclude that Problem PM has a unique solution uM. The unique solution
uM is characterized by the condition

0 ∈ ∂ (E(uM)+ IK(uM))⊂ AuM +∂J(uM)− f +∂ IK(uM),

where IK is the indicator function of the set K. Then we deduce

(AuM,v−uM)+ J0(uM;v−uM)−〈 f ,v−uM〉+ IK(v)− IK(uM)≥ 0, ∀v ∈V,

which implies

uM ∈ K, (AuM,v−uM)+ J0(uM;v−uM)−〈 f ,v−uM〉 ≥ 0, ∀v ∈ K.

Using property (3.8) again, we have

uM ∈ K, (AuM,v−uM)+
∫

Γ3

j0(uMν ;vν)dΓ≥ 〈 f ,v−uM〉, ∀v ∈ K.

It means that uM solves Problem PV . By Theorem 3.1, Problem PV has a unique solution. Thus
we conclude that the unique solution uM of Problem PM is also the unique solution to Problem
PV . �

4. DEEP NEURAL NETWORK FRAMEWORK

In this section, we propose a deep learning-based framework for solving the contact problem
mentioned above. Our framework consists of the following three parts:

• neural network architecture for constructing the objective function;
• loss function derived from the contact problem;
• optimization algorithm for the loss function.

4.1. Neural network architecture. Our aim is to train a deep neural network uθ (x) to approx-
imate the displacement field u(x) for ∀x ∈ Ω, where θ denotes the trainable parameters of the
network, including weights and biases.

In this work, we adopt the residual network architecture, which is inspired by the Deep Ritz
Method [14]. It consists of several residual blocks, and each block is constructed by two linear
layers, two nonlinear activation functions and a skip connection. The i-th block is described as:

blocki(s) = φ(Wi,2 ·φ(Wi,1x+bi,1)+bi,2)+ s,

where Wi,1,Wi,2 ∈ Rm×m,bi,1,bi,2 ∈ Rm, and φ is the activation function. We visualize the resid-
ual block in Figure 1.

Note that the input of the model is x ∈ Rd , so we add another fully-connect layer to adjust the
output of the first layer to Rm, i.e.,

block0(x) =W0 · x+b0,

where W0 ∈ Rm×d . The last layer of the last layer of the network is a fully connected layer,

blockn(s) =Wn · s+bn,

where Wn ∈ Rd×m,bn ∈ Rd .
In summary, the deep neual network uθ (·) : Ω→ Rd can be formulated as

uθ (x) = blockn ◦ . . .◦block0(x).
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FIGURE 1. Residual Block.

In this work, we adopt a variant of ReLU, LeakyReLU, as the activation function

φ(x) =

{
x i f x≥ 0,

ax i f x < 0.

The parameter a in LeakyReLU is a small positive number, and we set a = 0.1 by default. In
numerical experiments, we find that LeakyReLU significantly outperforms ReLU, tanh, and
ReLU3. Furthermore, our method is not limited to the current model architecture, other model
architectures are also feasible, such as [23].

4.2. Loss function. As we discussed in Section 3, contact problem P is equivalent to Problem
PM. Note that Problem PM can be regarded as a constrained optimization problem

min E(v) = 1
2〈Av,v〉+ J(v)−〈 f ,v〉.

subject to v = 0 on Γ1
vν ≤ g on Γ3.

Inspired by [24], we convert the above problem into the following minimization problem by
introducing two Lagrange terms

min
v∈H1(Ω;Rd)

L(v) =
1
2
〈Av,v〉+ J(v)−〈 f ,v〉+λ1

∫
Γ1

|v|2dx+λ2

∫
Γ3

max(0,vv−g)dx,

where λ1 and λ2 are the corresponding weights of Lagrange terms. So far, we use deep neural
networks to solve the above problem, a.e.

min
θ

L(θ) =
1
2
〈Auθ ,uθ 〉+ J(uθ )−〈 f ,uθ 〉

+λ1

∫
Γ1

|uθ |2dx+λ2

∫
Γ3

max(0,uθ
ν −g)dx.
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We then introduce the discrete form of L

min
θ

L̂(θ) = L̂main(θ)+ L̂lagrange(θ), (4.1)

where

L̂main(θ) =
1

2NΩ

NΩ

∑
i=1

A ε(uθ ,2
i )+

1
N3

N3

∑
i=1

j(uθ
ν ,i)−

1
N2

N2

∑
i=1

( f2 ·uθ
i )−

1
NΩ

NΩ

∑
i=1

( f0 ·uθ
i ),

and

L̂lagrange(θ) =
λ1

N1

N1

∑
i=1
||uθ ||22 +

λ2

N3

N3

∑
i=1

max(uθ
ν ,i−g)

where (·)i represents the value at i-th sampled point, and NΩ,N1,N2,N3 are the number of sam-
pled points in the domain Ω, on the boundary Γ1, Γ2 and Γ3, respectively, and (·)ν represents
the outer normal component.

In practical computation, the above loss function includes the calculation of the partial deriv-
ative with respect to uθ , we use the automatic differentiation package in PyTorch to calculate
it.

4.3. Optimization algorithm. Through the above analysis, we only need to train the neural
network and update the parameter θ to make the loss function (4.1) small enough to obtain a
numerical solution u(θ) that is sufficiently close to the solution of the original contact prob-
lem. The stochastic gradient descent(SGD) method is a common choice in machine learning to
update the model parameters. The SGD algorithm is described as follows:

θ
k+1 = θ

k−η
∂ L̂γk

∂θ
,

where η is the learning rate, and {γk} is a subset of the sampled training points. It is worth
mentioning that the training data of our method can be randomly sampled which does not re-
quire fixed grids or measurement data, so our method is mesh-less and unsupervised. In this
work, training data is randomly sampled from a uniform distribution on Ω,Γ1,Γ2, and Γ3. We
use the Adam optimizer version of the SGD algorithm and take ’mini-batch’ to compute the
gradient of the loss function at each iteration. In this work, the batch size on Ω,Γ1,Γ2, and Γ3
defaults to 2048,256,256, and 256, respectively.

During the numerical experiments, we find that the gradients of L̂main and the Lagrangian
terms L̂Lagrange conflict with each other, which makes the optimization process unstable. In
addition, adjusting the parameters λ1 and λ3 does not overcome this problem. Motivated by
asynchronous optimization in reinforcement learning, we propose an asynchronous iteration
strategy for this minimization problem.

Instead of directly updating the parameters according to 4.3, we update the main part and
Lagrange part separately. That is, every time the Lagrangian part is updated, the main part
is updated N times. At the beginning of the training process, with a small value of N, more
updates to the Lagrange part ensure that the model converges in the right direction. As the
training process progresses, after the loss value corresponding to the Lagrange part is small
enough, we gradually increase N from 10 to 1200, so that the main part receives more updates,
to ensure that the model can converge better. In this way, the choice of the values of λ1 and
λ2 has little effect on the result. We choose λ1 = λ2 = 1000 by default. In addition, the total
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number of updated iterations K = 8000, and the value of N increases by 100 every 50 iterations.
The whole process is shown in the Algorithm 4.1.

Algorithm 4.1 Optimization algorithm
Require: Initial weights θ , number of iterations K, number of sampled points N, asynchronous

iteration interval parameter d( j), learning rate η ,
1: for j = 1, . . . ,K do
2: Randomly sample γ j = {xi}N

i=1
3: Compute L̂main(θ)γ j

4: θ ←− θ −η ·
∂ L̂main(θ)γ j

∂θ

5: if j mod d(j) = 0 then
6: compute L̂lagrange(θ)γ j

7: θ ←− θ −η ·
∂ L̂lagrange(θ)γ j

∂θ

8: return θ̂ ←− θ

5. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to demonstrate the efficiency and ac-
curacy of the proposed method.

5.1. Example 1. As shown in Figure 2, we first consider a simple contact problem where the
thickness of the elastic material g = 0.

FIGURE 2. Contact model with elastic material thickness g = 0.

The boundarys are:

Γ1 = {0}× [0,1],Γ2 = (0,1)×{1},Γ3 = (0,1]×{0},



A DEEP NEURAL NETWORK-BASED NUMERICAL METHOD 493

and the function j(·) has the following form

j(uν) =


0 i f uν < 0,

150u2
ν i f 0≤ uν < 0.006,

−50u2
ν +2.4uν −0.0072 i f 0.0006≤ uν < 0.01,

150u2
ν −1.6uν +0.0128 i f uν ≥ 0.01.

The elasticity tensor operator A is

(A τ)i j =
Eκ

1−κ2 (τ11 + τ22)δi j +
E

1+κ
τi j,1≤ i, j ≤ 2,

where the Young’s modulus E = 1000N/m2 and the Poisson’s ratio of the material κ = 0.4. The
other parameters in this example are

f0(t) = (0,0)N/m2,

f2(t) =

{
(0, f2)N/m2 on (0,1)×{1},

(0,0)N/m2 on {1}× (0,1).

In this example, we use 5 residual blocks and the hidden size m = 128. We randomly sample
10000 points from a uniform distribution over the whole domain Ω, and sample 256 points on
each of the three boundaries Γ1,Γ2,Γ3. The learning rate is 5×10−3. We train the model with
one NVIDIA Tesla V100 GPU, and each experiment takes about 8 minutes.

Because the contact problem usually does not have an analytical solution, we take the finite
element solution with a sufficiently small grid size as the reference solution and compare it
with the numerical solution of our method. As shown in Table 1, our method achieves accurate
numerical solutions under different surface traction forces f2. It is worth to mention that our
method requires retraining a neural network for each input force f2, but it is not necessary to
retrain from scratch. For example, we can use the model parameters with f = 8 as initialization
parameters for f = 4, which can reduce the training time by more than half.

TABLE 1. The mean square error and the maximum error of numerical solution
with different f2 when g = 0.

f 2 mean error max error

8 4.6650e-06 1.4814e-05

16 3.8676e-06 2.2666e-05

32 2.7904e-05 9.8911e-05

64 5.2915e-05 0.0003

Furthermore, we visualize the outer normal component of the displacement field at the bound-
ary Γ3, and the displacement field uθ obtained by our method in the whole domain Ω, see Figure
(3,4,5,6).
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(a) Outer normal component on boundary
Γ3.

(b) Displacement field on domain Ω.

FIGURE 3. Surface traction force f = 8 when g = 0.

(a) Outer normal component on boundary
Γ3.

(b) Displacement field on domain Ω.

FIGURE 4. Surface traction force f = 16 with g = 0.

(a) Outer normal component on boundary
Γ3.

(b) Displacement field on domain Ω.

FIGURE 5. Surface traction force f = 32 with g = 0.
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(a) Outer normal component on boundary
Γ3.

(b) Displacement field on domain Ω.

FIGURE 6. Surface traction force f = 64 with g = 0.

5.2. Example 2. In this experiment, the thickness of the elastic material is g = 0.01, see Figure
7.

FIGURE 7. Contact model with elastic material thickness g = 0.01.

The function j(·) is

j(uν) =


0 i f uν < 0,

150u2
ν i f 0≤ uν < 0.006,

−50u2
ν +2.4uν −0.0072 i f uν > 0.006.

where other settings are the same as Example 1. We use the same deep neural network architec-
ture and training strategy as Example 1. Similarity, we demonstrate the accuracy of our method
with different surface traction forces f 2 = 16,32,64 on the boundary Γ2. As shown in Table 2,
our method still achieves high accuracy.

Furthermore, we visualize the outer normal component of the displacement field on the
boundary Γ3, and the displacement field uθ on the whole domain Ω, see Figure (8,9,10).
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TABLE 2. The mean square error and the maximum error of numerical solution
with different f 2 when g = 0.01.

f 2 mean error max error

16 2.5756e-06 2.6900e-05

32 7.3964e-06 6.0122e-05

64 2.4126e-05 0.0003

(a) Outer normal component on boundary Γ3. (b) Displacement field on domain Ω.

FIGURE 8. Surface traction force f = 16 with g = 0.01.

(a) Outer normal component on boundary Γ3. (b) Displacement field on domain Ω.

FIGURE 9. Surface traction force f = 32 with g = 0.01.
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(a) Outer normal component on boundary Γ3. (b) Displacement field on domain Ω.

FIGURE 10. Surface traction force f = 64 with g = 0.01.

6. CONCLUSION

In this work, we focused on a static frictionless unilateral contact problem. We first presented
its weak form and the unique solvability, and then we proved the weak form is equivalent to
a minimization problem. Based on the minimization problem, we proposed a deep learning
framework for solving the contact problem. Numerical experiments present the efficiency and
accuracy of our method. Our method has the advantages of being unsupervised, meshless, and
easy to implement. We made a preliminary exploration of using neural networks to solve the
contact problem. Our method has the potential to solve more complex contact problems, we
will discuss more types of contact problem in future studies. One limitation of this study is that
it needs to retrain the deep neural networks for different forces and thicknesses of elastic layers.
Although we can speed up training with transfer learning techniques, it still requires tedious
training and fine-tuning. Our further research might explore to overcome it.
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